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What is a metric graph?

A metric graph is made of vertices

and of edges joining the vertices or
going to infinity.

∞

∞

∞

metric graphs: the lengths of edges are important.
the edges going to infinity are halflines and have infinite length.
a metric graph is compact if and only if it has a finite number of
edges of finite length.
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Constructions based on halflines

∞
The halfline

∞ ∞
The line

∞

∞

∞

∞

∞

The 5-star graph

∞∞

∞

∞ ∞

∞

The 6-star graph
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Functions defined on metric graphs

G
ff0

e0

f1

e1

f2
e2

f0

f1
f2

A metric graph G with three edges e0 (length 5), e1 (length 4) and e2 (length 3)

,
a function f : G → R, and the three associated real functions.

∫
G

f dx def=
∫ 5

0
f0(x) dx +

∫ 4

0
f1(x) dx +

∫ 3

0
f2(x) dx
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Why studying metric graphs?
Physical motivations

Modeling structures where only one spatial direction is important.

∞
∞

∞

A « fat graph » and the underlying metric graph
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The differential system

Given constants p > 2 and λ > 0, we are interested in solutions u ∈ L2(G)
of the differential system



u′′ + |u|p−2u = λu on each edge e of G,

u is continuous for every vertex v of G,∑
e≻v

du
dxe

(v) = 0 for every vertex v of G,

(NLS)

where the symbol e ≻ v means that the sum ranges over all edges of
vertex v and where du

dxe
(v) is the outgoing derivative of u at v

(Kirchhoff’s condition).
We denote by Sλ(G) the set of nonzero solutions of the differential system.
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Kirchhoff’s condition: degree one nodes

x1
∞

lim
t−−→

t>0
0

u(x1 + t) − u(x1)
t = 0

In other words, the derivative of u at x1 vanishes: this is the usual
Neumann condition.

Damien Galant The nonlinear Schrödinger equation on metric graphs 7
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Kirchhoff’s condition in general: outgoing derivatives

x1
∞ ∞

∑
e≻v

du
dxe

(v) = 0
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The real line: G = R

∞ ∞

Sλ(R) =
{

±φλ(x + a)
∣∣∣ a ∈ R

}
where the soliton φλ is the unique strictly positive and even solution to

u′′ + |u|p−2u = λu.
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The halfline: G = R+ = [0, +∞[

∞

Sλ(R+) =
{

±φλ(x)|R+

}
Solutions are half-solitons: no more translations!

Damien Galant The nonlinear Schrödinger equation on metric graphs 10
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The positive solution on the 3-star graph
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A continuous family of solutions on the 4-star graph
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Variational formulation

We work on the Sobolev space

H1(G) :=
{

u : G → R | u is continuous, u, u′ ∈ L2(G)
}

.

Solutions of (NLS) correspond to critical points of the action functional

Jλ(u) := 1
2∥u′∥2

L2(G) + λ

2 ∥u∥2
L2(G) − 1

p ∥u∥p
Lp(G).

The level of the soliton φλ plays an important role in our analysis:

sλ := Jλ(φλ).

Damien Galant The nonlinear Schrödinger equation on metric graphs 13
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The Nehari manifold

The functional Jλ is not bounded from below on H1(G), since if u ̸= 0 then

Jλ(tu) = t2

2 ∥u′∥2
L2(G) + λt2

2 ∥u∥2
L2(G) − tp

p ∥u∥p
Lp(G) −−−→

t→∞
−∞.

A common strategy is to introduce the Nehari manifold Nλ(G), defined by

Nλ(G) :=
{

u ∈ H1(G) \ {0} | J ′
λ(u)[u] = 0

}
=
{

u ∈ H1(G) \ {0} | ∥u′∥2
L2(G) + λ∥u∥2

L2(G) = ∥u∥p
Lp(G)

}
.

If u ∈ Nλ(G), then
Jλ(u) =

(1
2 − 1

p
)
∥u∥p

Lp(G).

In particular, Jλ is bounded from below on Nλ(G).

Damien Galant The nonlinear Schrödinger equation on metric graphs 14
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Two action levels

« Ground state » action level:

cλ(G) := inf
u∈Nλ(G)

Jλ(u)

Ground state: function u ∈ Nλ(G) with level cλ(G). It is a solution of
the differential system (NLS).
Minimal level attained by the solutions of (NLS):

σλ(G) := inf
u∈Sλ(G)

Jλ(u).

Minimal action solution: solution u ∈ Sλ(G) of the differential system
(NLS) of level σλ(G).

Damien Galant The nonlinear Schrödinger equation on metric graphs 15
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Four cases

An analysis shows that four cases are possible:

A1) cλ(G) = σλ(G) and both infima are attained;
A2) cλ(G) = σλ(G) and neither infima is attained;
B1) cλ(G) < σλ(G), σλ(G) is attained but not cλ(G);
B2) cλ(G) < σλ(G) and neither infima is attained.

Theorem (De Coster, Dovetta, G., Serra (2023))
For every p > 2, every λ > 0, and every choice of alternative between A1,
A2, B1, B2, there exists a metric graph G where this alternative occurs.

Damien Galant The nonlinear Schrödinger equation on metric graphs 16
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Case A1
cλ(G) = σλ(G) and both infima are attained

Compact graphs

∞ ∞
The line

∞
The halfline

∞ ∞
All graphs with cλ(G) < sλ
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Case B1
cλ(G) < σλ(G), σλ(G) is attained but not cλ(G)

∞

∞

∞

∞

∞

∞∞

∞

∞ ∞

∞

N-star graphs, N ≥ 3

sλ = cλ(G) < σλ(G) = N
2 sλ
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Case A2
cλ(G) = σλ(G) and neither infima is attained

∞
v1

L1

v2

L2

v3

L3

v4

L4

v5

L5

v6

L6

· · ·· · ·· · ·· · ·· · ·· · ·· · ·

· · ·

sλ = cλ(G) = σλ(G)
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Case B2
cλ(G) < σλ(G) and neither infima is attained

∞ ∞ ∞ ∞ ∞ ∞ ∞∞ ∞ ∞ ∞ ∞ ∞ ∞

v0 v1 v2 v3v−1v−2v−3

L1 L2 L3L−1L−2L−3

B

R−3 R−2 R−1 R0 R1 R2 R3

sλ = cλ(G) < σλ(G)
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Decreasing rearrangement on the halfline

G

u

e0

e1

e2

u∗

|G|

For all 1 ≤ p ≤ +∞,

∥u∥Lp(G) = ∥u∗∥Lp(0,|G|).
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The Pólya–Szegő inequality

Theorem
Let u ∈ H1(G) be a nonnegative function. Then its decreasing
rearrangement u∗ belongs to H1(0, |G|), and one has

∥(u∗)′∥L2(0,|G|) ≤ ∥u′∥L2(G).

Pólya, G., Szegő, G. Isoperimetric Inequalities in Mathematical
Physics. Annals of Mathematics Studies. Princeton, N.J. Princeton
University Press. (1951).

Duff, G. Integral Inequalities for Equimeasurable Rearrangements.
Canadian Journal of Mathematics 22 (1970), no. 2, 408–430.

Friedlander, L. Extremal properties of eigenvalues for a metric graph.
Ann. Inst. Fourier (Grenoble) 55 (2005) no. 1, 199–211.
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The Pólya–Szegő inequality
A simple case: affine functions

We assume that u is piecewise affine.

u

I

ℓ1 ℓ2 ℓ3 ℓ4

u∗

I

ℓ1 + ℓ2 + ℓ3 + ℓ4

We consider a small open interval I ⊆ u(G) so that u−1(I) consists of a
disjoint union of open intervals on which u is affine.
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The Pólya–Szegő inequality
A simple case: affine functions

Original contribution to ∥u′∥2
L2 :

A := ℓ1
|I|2

ℓ2
1

+ ℓ2
|I|2

ℓ2
2

+ ℓ3
|I|2

ℓ2
3

+ ℓ4
|I|2

ℓ2
4

= |I|2
ℓ1

+ |I|2
ℓ2

+ |I|2
ℓ3

+ |I|2
ℓ4

Contribution to ∥(u∗)′∥2
L2 :

B := |I|2
ℓ1 + ℓ2 + ℓ3 + ℓ4

Inequality between arithmetic and harmonic means:

ℓ1 + ℓ2 + ℓ3 + ℓ4
4 ≥ 4

1
ℓ1

+ 1
ℓ2

+ 1
ℓ3

+ 1
ℓ4

⇒ A ≥ 42B ≥ B.
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A refined Pólya–Szegő inequality...
... or the importance of the number of preimages

Theorem
Let u ∈ H1(G) be a nonnegative function. Let N ≥ 1 be an integer.
Assume that, for almost every t ∈ ]0, ∥u∥∞[, one has

u−1({t}) =
{
x ∈ G | u(x) = t

}
≥ N.

Then one has
∥(u∗)′∥L2(0,|G|) ≤ 1

N ∥u′∥L2(G).
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Assumption (H)

Definition (Adami, Serra, Tilli 2014)
We say that a metric graph G satisfies assumption (H) if, for every point
x0 ∈ G, there exist two injective curves γ1, γ2 : [0, +∞[ → G parameterized
by arclength, with disjoint images except for an at most countable number
of points, and such that γ1(0) = γ2(0) = x0.

∞ ∞
x0

Consequence: all nonnegative H1(G) functions have at least two preimages
for almost every t ∈ ]0, ∥u∥∞[.
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Why studying metric graphs?
Mathematical motivations

Main message
Metric graphs allow to study interesting one dimensional problems and are
much richer than the usual class of intervals of R.

Dimension one has many advantages:
“nice” Sobolev embeddings

, H1 functions are continuous;

counting preimages and the refined Pólya–Szegő inequality;
ODE techniques;
. . . ;

Replacing G by noncompact smooth open sets Ω ⊆ Rd , d ≥ 2 and H1(G)
by H1(Ω) or H1

0 (Ω), one expects that the four cases A1, A2, B1, B2
actually occur.

However, to this day, it remains on open problem!

Damien Galant The nonlinear Schrödinger equation on metric graphs 27
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Kirchhoff’s condition: degree two nodes

x1
∞∞

(
lim

t−−→
t>0

0

u(x1 + t) − u(x1)
t

)
+
(

lim
t−−→

t>0
0

u(x1 − t) − u(x1)
t

)
= 0

In other words, the left and right derivatives of u are equal, which simply
means that u is differentiable at x1. This explains why usually we do not
put degree two nodes.
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A very useful tool: cutting solitons on halflines

Proposition
Assume that G has at least one halfline. Then,

cλ(G) ≤ sλ := Jλ(φλ)

Proof.

G
∞

u
e0

e1

e2
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Case A1
cλ(G) = σλ(G) and both infima are attained

Theorem (Adami, Serra, Tilli 2014)
Let G be a metric graph with finitely many edges, including at least one
halfline. Assume that

cλ(G) < sλ.

Then cλ(G) is attained, which means that there exists a ground state, so
we are in case A1: cλ(G) = σλ(G), both attained.
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Non-existence of ground states

Theorem (Adami, Serra, Tilli 2014)
If a metric graph G satisfies assumption (H), then

cλ(G) := inf
u∈Nλ(G)

Jλ(u) = sλ

but it is never achieved

, unless G is isometric to one of the exceptional
graphs depicted in the next two slides.
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Non-existence of ground states
Exceptional graphs: the real line

x1
∞ ∞
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Non-existence of ground states
Exceptional graphs: the real line with a tower of circles

xn
∞∞

xn−1

x1

x2...
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A doubly constrained variational problem
We define

Xe :=
{

u ∈ H1(G) | ∥u∥L∞(G) = ∥u∥L∞(e)
}

where e is a given bounded edge of G

and we consider the
doubly–constrained minimization problem

cλ(G, e) := inf
u∈Nλ(G)∩Xe

Jλ(u).

Theorem (De Coster, Dovetta, G., Serra (2023))
If G satisfies assumption (H) has a long enough bounded edge e, then
cλ(G, e) is attained by a solution u ∈ Sλ(G), such that u > 0 or u < 0 on
G and

∥u∥L∞(e) > ∥u∥L∞(G\e).
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What’s going on in case A2?
cλ(G) = σλ(G) and neither infima is attained

∞
v1

L1

v2

L2

v3

L3

v4

L4

v5

L5

v6

L6

· · ·· · ·· · ·· · ·· · ·· · ·· · ·

· · ·
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What’s going on in case A2?

Since G has at least one halfline and satisfies assumption (H), one has
cλ(G) = sλ and the infimum is not attained (as G does not belong to
the class of exceptional graphs).

Cutting solitons on the loops, one sees that

cλ(G, Ln) −−−→
n→∞

sλ

According to the existence Theorems, cλ(G, Ln) is attained by a
solution of (NLS) for every n large enough.
One obtains

sλ = cλ(G) ≤ σλ(G) ≤ lim inf
n→∞

cλ(G, Ln) = sλ,

so
cλ(G) = σλ(G) = sλ

and neither infimum is attained.
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What’s going on in case B2?
cλ(G) < σλ(G) and neither infima is attained

∞ ∞ ∞ ∞ ∞ ∞ ∞∞ ∞ ∞ ∞ ∞ ∞ ∞

v0 v1 v2 v3v−1v−2v−3

L1 L2 L3L−1L−2L−3

B

R−3 R−2 R−1 R0 RR̃ R2 R3

The graph GN .

The loops Li have length N and B is made of N edges of length 1.
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What’s going on in case B2?
A second, periodic, graph

∞ ∞ ∞ ∞ ∞ ∞ ∞∞ ∞ ∞ ∞ ∞ ∞ ∞

ṽ0 ṽ1 ṽ2 ṽ3ṽ−1ṽ−2ṽ−3

L̃1 L̃2 L̃3L̃−1L̃−2L̃−3 L̃0

R̃−3 R̃−2 R̃−1 R̃0 R̃R̃ R̃2 R̃3

The graph G̃N .

The loops L̃i have length N.
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What’s going on in case B2?
Two problems at infinity

Since GN and G̃N satisfy (H) and contain halflines, one has

sλ = cλ(GN) = cλ(G̃N),

and neither infima is attained.

One can show that, if N is large enough, then σλ(G̃N) is attained
(using the periodicity of G̃N).

Hence σλ(G̃N) > sλ.

One then shows, using suitable rearrangement techniques, that

σλ(GN) = σλ(G̃N),

but that σλ(GN) is not attained.
Therefore, for large N, we have that

sλ = cλ(GN) < σλ(GN),

and neither infima is attained, as claimed.
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